

ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017

http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/

Lecture 7: Flow Control - I

Tushar Krishna

Assistant Professor School of Electrical and Computer Engineering Georgia Institute of Technology

tushar@ece.gatech.edu

Network Architecture

Topology

- How to connect the nodes
- ~Road Network

Routing

- Which path should a message take
- Series of road segments from source to destination

Flow Control

- When does the message have to stop/proceed
- Traffic signals at end of each road segment

Router Microarchitecture

- How to build the routers
- Design of traffic intersection (number of lanes, algorithm for turning red/green)

Flow Control

Once the topology and route are fixed, flow control determines the *allocation of network resources* (channel bandwidth, buffer capacity, and control state) to packets as they traverse the network

== resolution of contention between packets requesting the same resource

~Traffic Signals / Stop signs at end of each road segment

Why Flow Control matters?

Flow control can single-handedly determine performance, however efficient the topology or routing algorithm might be

	Latency (hops) (A→B)	Throughput (msg/cycle) (A→B)
Topology	1	1
Routing (XY)	2	1
Flow Control	3 (R _A +) L _{AC} + R _C + L _{CB} (+ R _B)	
Case I: One buffer at C	T LCB (T KB)	1/2
Case II: Four D→B msgs		1/5

Suppose Router Delay = 1, Link Delay = 1

Allocation Granularity: Messages, Packets, and Flits

Off-chip (SANs)

Messages could be B/KB/MB of data Flits have to be sent serially as multiple phits (limited by **pins**)

On-chip (NoC)

Message = Packet Flit = Phit (abundant on-chip wires)

Packet Sizes in NoCs

All flits of a packet take same route and have the same VCid

Flow Control based on Allocation Granularity

- Message-based Flow Control
 - E.g., Circuit Switching

- Packet-based Flow Control
 - E.g., Store and Forward, Virtual Cut-Through

- Flit-based Flow Control
 - E.g., Wormhole, Virtual Channel

Message-based Flow Control

- Coarsest Granularity
- Circuit-switching
 - Setup entire path before sending message
 - Reserve all channels from source to destination using a setup probe
 - Once setup complete, send Data through the channels
 - Buffers not needed at routers as no contention
 - Tear down the circuit once transmission complete

Circuit Switching Example

- Significant latency overhead prior to data transfer
 - Data transfer does not pay per-hop overhead for buffering, routing, and allocation

Handling Contention

- When there is contention
 - Significant wait time
 - Message from $1 \rightarrow 2$ must wait

Challenges with Circuit-Switching

- Loss in bandwidth (throughput)
 - Throughput can suffer due to setup and transfer time for circuits
 - Links are idle until setup is complete
 - No other message can use links until transfer is complete
- Latency overhead in setup if the amount of data being transferred is small

Circuit-Switching in NoCs?

- Cache Line = 64B
 - Suppose
 - Channel Width = 128b => 64x8/128 = 4 chunks
 - 3-hop traversal with 1-cycle per hop
 - Setup = 3 cycles
 - ACK = 3 cycles
 - Data Transfer Time = 3 (for first chunk) + 3 (remaining chunks) = 6 cycles
 - Total Time = 12 cycles
 - Half of this went in circuit setup!
- Hybrid Circuit-Packet Switching
 - "Jerger et. al, "Circuit Switched Coherence", NOCS 2008

Time-Space Diagram: Circuit Switching

Packet-based Flow Control

- "Packet Switching"
 - Break messages into packets
 - Interleave packets on links
 - Better utilization
 - Requires per-node buffering to store packets inflight waiting for output channel

- Two techniques
 - Store and Forward
 - Virtual Cut-Through

Packet-based: Store and Forward

Links and buffers are allocated to entire packet

Head flit waits at router until entire packet is received before being forwarded to the next hop

Store and Forward Example

Not suitable on-chip. Why?

- High per-hop latency
 - Serialization delay paid at each hop
- Larger buffering required

Time-Space Diagram: Store and Forward

Packet-based: Virtual Cut-Through

Links and Buffers allocated to entire packets

- Flits can proceed to next hop before tail flit has been received by current router
 - But only if next router has enough buffer space for entire packet

Virtual Cut-Through Example

Time-Space Diagram: Virtual Cut-Through

Virtual Cut-Through Example (2)

Throughput suffers from inefficient buffer allocation

Time-Space Diagram: Virtual Cut-Through (2)

Flit-level Flow Control

- Like VCT, flit can proceed to next router before entire packet arrives
 - Unlike VCT, flit can proceed as soon as there is sufficient buffering for that flit
- Buffers allocated per flit rather than per packet
 - Routers do not need to have packet-sized buffers
 - Help routers meet tight area/power constraints

- Two techniques
 - Wormhole link allocated per packet
 - Virtual Channel link allocated per flit

Wormhole Flow Control Example

Wormhole Flow Control

Pros

- More efficient buffer utilization (good for on-chip)
- Low latency

Cons

- Poor link utilization: if head flit becomes blocked, all links spanning length of packet are idle
- Cannot be re-allocated to different packet
- Suffers from head of line (HOL) blocking

Time-Space Diagram: Wormhole

